
Aragon Contract Audit

Introduction

This audit report was undertaken by @adamdossa for the purpose of providing feedback to Aragon.
It has been written without any express or implied warranty.

The review focussed on the Solidity contract code in these repos, and covered:
- possible attack vectors
- mismatches between logic and documentation
- possible code improvements
- confusing functionality or naming

The review was performed using the code tagged with audit1 at the following commits.

aragon-core:
https://github.com/aragon/aragon-core/tree/audit1/contracts

aragon-apps:
https://github.com/aragon/aragon-apps/tree/audit1/apps

We used RocketChat to coordinate the review and help resolve questions during the review process.

Overview

Overall the code structure was readable, well-documented and structured coherently and
consistently.

Functions largely conform to the best practices at:
http://solidity.readthedocs.io/en/develop/style-guide.html
making the structure and code easy to parse and understand.

The codebase also included comprehensive testing suites, using the Truffle testing framework. The
Aragon team also employs a coverage framework and linter process to ensure their code remains
consistent and testing comprehensive.

The team was responsive, measured and prompt in their responses and feedback during the
process.

General Comments

There were a few functions that were missing explicit function visibility modifiers. This has been●

reviewed and corrected (including linter updates) via:
https://github.com/aragon/aragon-apps/pull/33
In addition to the below there are a few miscellaneous fixes and improvements that have been●



made, including additional testing coverage and minor fixes. These include:
https://github.com/aragon/aragon-apps/commit/49253097831a6f979c68c309ae0c6c00c325af4d
https://github.com/aragon/aragon-apps/commit/c239847065eebb2f2b3ea2dbc264b8a25cd788cd
as well as many other incremental improvements which have been made during and after this
audit process.

aragon-core/contracts/kernel

These contracts form the core Kernel implementation. The Kernel manages app and Kernel
permissions and provides a layer of indirection to access apps (allowing apps, including the Kernel,
to be upgraded as necessary).

Issues

There were a few areas of the documentation which were either out-dated, or possibly confusing.
These included:

description of Grant Permission which has now been amended to make the conditions of this●

operation clearer.
making the separation between instantiation and initialisation clearer.●

correcting some minor mistakes in the example code for Create Permission●

These issues have now been resolved in a number of pull requests:
https://github.com/aragon/aragon-wiki/commit/32b6f1cfb396c8974a2be4e925111e33dbe9b275
https://github.com/aragon/aragon-wiki/commit/b2cde71d3faa8212a3124813901b8d5280d93c76
https://github.com/aragon/aragon-wiki/commit/c3a734c651a04052cea0dc80753079a4a6a9ab82

Possible Improvements

Some possible future improvements were identified, specifically:

events being triggered when permissions were used.●

managing the instantiation / initialisation of contracts (see below section for more details).●

continuing to work on documentation to make the permission framework as clear as possible.●

aragon-core/contracts/apps and
aragon-core/contracts/common

These contracts contains the logic required for both proxy contracts (which allow the underlying
"business logic" contracts to be upgraded) and forwarding (which allows entities to forward
transaction scripts to other entities for execution).

Issues

Pre-Byzantium logic could now be removed from DelegateProxy as returndatasize opcodes are●

now available. This has now been resolved via:



https://github.com/aragon/aragon-core/pull/145
The use of delegatecall to execute underlying App logic is a clever way of preserving state and●

Ether value in the DelegateProxy whilst using the code / business logic of an upgradable App
contract. The below represent areas that could be clarified in the documentation, rather than
bugs in the code.

Since the App code is expected to have state / storage, this imposes a limitation that any new❍

upgraded version of the App has a superset of the previous contract which it is replacing.
Since state is maintained in the DelegateProxy contract, not the underlying App contract, this❍

may cause some practical issues with third-party apps such as exchanges or etherscan.io (for
example I don't believe the "Read Contract" functionality on etherscan.io would work as the ABI
wouldn't have the relevant functions on the DelegateProxy contract, and the state on the App
contract wouldn't reflect updates).

There were a few areas of documentation which use inconsistent terminology (e.g. scaling vs.●

forwarding) which have been resolved via:
https://github.com/aragon/aragon-wiki/commit/c3a734c651a04052cea0dc80753079a4a6a9ab82
One of the identified issues related to the instantiation and initialisation of AppProxy contracts not●

being atomic. In the expected use-cases, where AppProxy contracts are instantiated and initialised
through a factory process (within a single atomic transaction) this is not problematic, but there is
some potential for this structure to be abused in unexpected use-cases, allowing a malicious user
to front-run AppProxy contracts. The Aragon team discussed various options internally and an
approach was implemented to allow an optional _initializePayload to be passed to the
AppProxy constructor, which can be used to initialise the contract as part of its instantiation.
https://github.com/aragon/aragon-core/pull/148

Possible Improvements

Given the use of delegatecall, the documentation could clarify the intention as to whether App●

contracts are designed to be used as factory contracts, or redeployed for each Aragon
organisation.
It may be sensible to make the 10000 gas in AppProxy a variable that can be modified to account●

for any future changes to opcode gas costs for delegatecall.

aragon-apps/apps/voting/contracts

This contract allows votes to take place on arbitrary actions, using the MiniMeToken to determine
voting power of token holders.

Issues

The VoterState of Absent doesn't seem to be used anywhere - not sure if this is in for some●

future purpose perhaps, if not it could be removed.
The Voting app automatically executed a vote payload once the outcome of the vote was beyond●

doubt. Whilst this is useful functionality, it made it hard for a voter to estimate gas requirements
and the effect of their vote transaction deterministically (as the outcome depended on whether or
not the vote tipped the balance). A boolean parameter has now been introduced to allow a voter



to specify whether or not they want their vote to automatically execute the vote payload (if
appropriate) via:
https://github.com/aragon/aragon-apps/commit/ae8a92e05c9bb90892da24e09ba1354fe49514ac

Possible improvements

Currently the duration of a vote is fixed on initialisation of the Voting contract - it may be worth●

considering making this a per-Vote variable instead to allow for both long and short-dated votes.
Since the _minAcceptQuorumPct can be modified during the lifetime of the contract, it may be that
users also want to change voteTime as well.
The event CastVote should include the number of votes being cast to allow easier off-chain●

tracking of vote status. This has now been resolved via:
https://github.com/aragon/aragon-apps/commit/8ea8cda2d190a695d2a7ec0d7680c4c8bafd5054
When modifying the _minAcceptQuorumPct through changeMinAcceptQuorumPct it may be worth●

emitting an event for this change. This has now been resolved via:
https://github.com/aragon/aragon-apps/commit/03f26441f60a4dedd042749972218fb6dadaa9de
When creating a new vote through the forward method, it may be worth putting a non-blank●

_metadata in to make it clearer to track where the vote has come from. This could incorporate the
forwarding entities address.

aragon-apps/apps/token-manager/contracts

This contract manages token actions through the MiniMeToken contract (either wrapping another
token, or natively).

Issues

canForward allows holders of tokens which have not yet vested to forward request - this may be●

intentional, but worth clarifying in the documentation.
It is technically possible for a single TokenManager to be set as the controller for multiple●

MiniMeToken contracts. It may be worth asserting in the TokenController functions (onApprove,
onTransfer, proxyPayment) that msg.sender matches the expected token value, to avoid any
misconfiguration.

Possible Improvements

The vesting model follows broadly the Zeppelin approach. In my experience clients have often●

wanted a simpler model with a single cliff date, upon which all tokens vest. This is not possible to
achieve with the implemented approach as the tokens must vest linearly between the start and
vesting dates (with nothing vesting before the cliff date).
It may be worth mentioning in the documentation that it is important to set the controller in the●

MiniMeToken to be the TokenManager (i.e. that it isn't sufficient to initialise the TokenManager with
the MiniMeToken but that the link needs to go both ways).



aragon-apps/apps/group/contracts

This contract acts as a simple way to permission a group of entities as a single entity.

 Issues

In the documentation, there is a minor grammatical mistake - the phrase "This is needed for●

identification purposes, given that the only other context the group possesses." should perhaps
be "This is needed for identification purposes, given that it is the only context the group
possesses.".

aragon-apps/apps/fundraising/contracts

This contract is responsible for raising funds (in any ERC20 token, which could include wrapped
Ether) in return for a new ERC20 token.

Issues

In line 297, it should be (period.finalPrice != initialPrice) rather than (period.finalPrice●

!= 0). From the documentation, it says:
"A period has an initial and final price. If they are not the same, price for a given timestamp is
linearly interpolated in function of time." This has now been resolved via:
https://github.com/aragon/aragon-apps/commit/49253097831a6f979c68c309ae0c6c00c325af4d
In function _buy the calculation of returnAmount is subject to rounding errors I believe. i.e. in the●

isInversePrice case, if dividing by pricePrecision leads to rounding, then re-multiplying by
pricePrecision may not yield the expected value. This is an issue that is worth being aware of,
but is unlikely to lead to any genuine problems.
The initialize function could check that the TokenManager is running in native (rather than●

wrapped) mode by checking the public variable _tokenManager.wrappedToken == 0.
Having getCurrentPrice behave differently on a call / sendTransaction may be confusing. You●

could refactor this so that it is genuinely a constant function instead. I agree that functionally this
works as transitionSalePeriodIfNeeded is always called before any other state modifying
functions execute.
calculatePrice has an implicit dependency on transitionSalePeriodIfNeeded being called●

before it is used. This could be enforced in the function (e.g. by checking that the current
timestamp is between sale.periodStartTime and sale[currentPeriod].periodEnds. This is
redundant in the current code (since transitionSalePeriodIfNeeded is always called before
calculatePrice but would make it harder to make errors in the future, or in derived contracts).
This has now been resolved via:
https://github.com/aragon/aragon-apps/commit/c239847065eebb2f2b3ea2dbc264b8a25cd788cd

Possible Improvements

Adding a token purchase function which allows a beneficiary address (rather than msg.sender) to●

receive tokens may be useful.



Having the ability to associate a script to be called on a sale closing may be useful. This script●

could for example ensure that no more tokens could be minted (effectively capping the issued
tokens supply) by revoking MINT_ROLE permissions from the TokenManager, or allow the
FundRaising contract to transfer CREATE_SALES_ROLE permission to a different entity (i.e. a
VotingApp associated with the token being issued).
Maybe worth making the distinction between tokens being raised, and tokens being issued●

clearer through consistent variable naming. Tracking which variables correspond to raisedToken
and which correspond to tokens being issued was confusing (maybe consistently call this
raisedToken and issuedToken or similar). i.e. uint256 returnTokens = ... could become
uint256 returnRaisedTokens = ..., _payedTokens could become _paidRaisedTokens, _value in
tokenFallback could become _paidRaisedToken, sale.minBuy would become sale.minRaised
and so on.
I'm not sure what the motivation to have multiple (potentially concurrent) ongoing sales is? I●

guess if you wanted to raise from a mix of tokens that would make sense (as each Sale could
have a different raisedToken), but in this case you wouldn't have a consolidated cap etc., which
would make it confusing. I can see that it may be required to have a follow-on sale, but wonder
whether having each sale being represented by a new FundRaisingProxy may be simpler / clearer.

aragon-apps/apps/finance/contracts

This contract is responsible for tracking transactions (payments or deposits) across an
organisations token balances, and managing scheduled payments.

Given the importance of this contract and the value there would be in exploiting it, it may be worth
having this specific contract be audited separately by multiple individuals and / or placing a bounty
within a live deployment to encourage investigation.

Issues

Any reason why the minimum payment duration is 2, rather than 1:●

require(_periodDuration > 1);

I can see that you use settings.periodDuration - 1 as the duration length, but not clear why
you don't just use settings.periodDuration (with the requirement that
settings.periodDuration > 0);
In both tokenFallback, and deposit the _token.transferFrom and token.transfer methods●

could potentially re-enter the Finance app. I can't immediately see how this can cause an issue,
but worth being aware of.
It may be worth mentioning in the documentation that payments can be "back-dated", in which●

case the receiver will be eligible to execute all "back-dated" payments. This has now been resolved
via:
https://github.com/aragon/aragon-wiki/commit/b2cde71d3faa8212a3124813901b8d5280d93c76
If the budget for a token is reduced during a period (via setBudget) it is possible that●

_getRemainingBudget may throw if the amount already spent (
periods[currentPeriodId()].tokenStatement[_token].expenses) is larger than the new budget



(in which case settings.budgets[_token].sub(spent) will throw). It may be better to return 0
rather than throwing in this case.
_makePaymentTransaction could record the payment reference in the corresponding transaction●

reference.

Possible Improvements

There are no restrictions on what ERC20 tokens can be used for deposits. This would allow an●

attacker to create an ERC20 token which always returns true on _token.transferFrom without
actually depositing any tokens. Whilst this isn't really an issue it would be possible to bloat the
transactions array. Not sure there is really an easy solution to this, although having an optional
"whitelist" of allowed token addresses that can be deposited is an option.

aragon-apps/apps/vault/contracts

This contract is used to store an organisations tokens (and wrapped Ether). Any actual balances will
be held in the corresponding AppProxy contract.

This is a nice and simple contract, with no obvious issues.

Possible Improvements

Potentially integrating this contract with the Finance contracts budget functionality. In other●

words setting a budget in the Finance app could require a corresponding allowance in the Vault
app for the given token.


